Balanceamento passo a passo usando o método algébrico
Vamos equilibrar esta equação usando o método algébrico. Primeiro, definimos todos os coeficientes para as variáveis a, b, c, d, ... a LiNO3 + b Cr(NO3)39 + c Mn(NO3)2 + d Fe(NO3)3 + e Co(NO3)2 + f Ni(NO3)2 + g C6H8O7 = h Li5CrMnFeCoNiO10 + i N2 + j CO2 + k H2O
Agora escrevemos equações algébricas para equilibrar cada átomo: Li: a * 1 = h * 5 N: a * 1 + b * 39 + c * 2 + d * 3 + e * 2 + f * 2 = i * 2 O: a * 3 + b * 117 + c * 6 + d * 9 + e * 6 + f * 6 + g * 7 = h * 10 + j * 2 + k * 1 Cr: b * 1 = h * 1 Mn: c * 1 = h * 1 Fe: d * 1 = h * 1 Co: e * 1 = h * 1 Ni: f * 1 = h * 1 C: g * 6 = j * 1 H: g * 8 = k * 2
Agora atribuímos a=1 e resolvemos o sistema de equações de álgebra linear: a = h * 5 a + b * 39 + c * 2 + d * 3 + e * 2 + f * 2 = i * 2 a * 3 + b17 + c * 6 + d * 9 + e * 6 + f * 6 + g * 7 = h0 + j * 2 + k b = h c = h d = h e = h f = h g * 6 = j g * 8 = k * 2 a = 1
Resolvendo este sistema de álgebra linear chegamos a: a = 1 b = 0.2 c = 0.2 d = 0.2 e = 0.2 f = 0.2 g = 3.3111111111111 h = 0.2 i = 5.3 j = 19.866666666667 k = 13.244444444444
Para chegar aos coeficientes inteiros, multiplicamos todas as variáveis por90 a = 90 b = 18 c = 18 d = 18 e = 18 f = 18 g = 298 h = 18 i = 477 j = 1788 k = 1192
Agora substituímos as variáveis nas equações originais pelos valores obtidos pela resolução do sistema de álgebra linear e chegamos à equação totalmente balanceada: 90 LiNO3 + 18 Cr(NO3)39 + 18 Mn(NO3)2 + 18 Fe(NO3)3 + 18 Co(NO3)2 + 18 Ni(NO3)2 + 298 C6H8O7 = 18 Li5CrMnFeCoNiO10 + 477 N2 + 1788 CO2 + 1192 H2O
Link direto para esta equação balanceada:
Por favor, conte sobre esse site grátis de química para os seus amigos!
Instruções sobre balanceamento de equações químicas:
Digite uma equação de uma reação química e pressione o botão 'Balancear'. A resposta vai aparecer abaixo
Sempre use letra maiúscula para o primeiro caractere no nome do elemento e minúscula para o segundo. Exemplos: Fe, Au, Co, Br, C, O, N, F. Compare: Co - cobalto e CO - monóxido de carbono
Para inserir um elétron em um uso equação química {-} ou e
Para inserir um íon especificar carga depois que o composto entre chaves: {3} ou {3 +} ou {3} Exemplo : Fe {3} + +. Eu {-} = {Fe 2 +} + I2
Substitua grupos imutáveis em compostos químicos para evitar ambiguidade. Por exemplo equação C6H5C2H5 + O2 = C6H5OH + CO2 + H2O não será equilibrada, mas PhC2H5 + O2 = PhOH + CO2 + H2O será.
Estado dos compostos [como (s) (aq ) ou (g)] não são necessários.
Se você não sabe quais são os produtos é só inserir os reagentes e clicar em 'Balancear!'. Em muitos casos, a equação completa será sugerida.
Exemplos de equações químicas completas para equilibrar:
Uma equação química representa uma reação química. Mostra os reagentes (substâncias que iniciam uma reação) e os produtos (substâncias formadas pela reação). Por exemplo, na reação do hidrogênio (H₂) com oxigênio (O₂) para formar água (H₂O), a equação química é:
No entanto, esta equação não está balanceada porque o número de átomos de cada elemento não é o mesmo em ambos os lados da equação. Uma equação balanceada obedece à Lei da Conservação da Massa, que afirma que a matéria não é criada nem destruída numa reação química.
Balanceamento com inspeção ou método de tentativa e erro
Este é o método mais direto. Envolve observar a equação e ajustar os coeficientes para obter o mesmo número de cada tipo de átomo em ambos os lados da equação.
Melhor para: Equações simples com um pequeno número de átomos.
Processo: Comece com a molécula mais complexa ou com mais elementos e ajuste os coeficientes dos reagentes e produtos até que a equação esteja equilibrada.
Conte o número de átomos de H e O em ambos os lados. Existem 2 átomos de H à esquerda e 2 átomos de H à direita. Existem 2 átomos de O à esquerda e 1 átomo de O à direita.
Equilibre os átomos de oxigênio colocando um coeficiente de 2 na frente de H 2 O:
Verifique o saldo. Agora, ambos os lados têm 4 átomos de H e 2 átomos de O. A equação está equilibrada.
Balanceamento com método algébrico
Este método usa equações algébricas para encontrar os coeficientes corretos. O coeficiente de cada molécula é representado por uma variável (como x, y, z), e uma série de equações são configuradas com base no número de cada tipo de átomo.
Melhor para: Equações que são mais complexas e não são facilmente balanceadas por inspeção.
Processo: atribua variáveis a cada coeficiente, escreva equações para cada elemento e depois resolva o sistema de equações para encontrar os valores das variáveis.
Escreva equações baseadas na conservação do átomo:
2 a = c
6 a = 2 d
2 b = 2c + d
Atribua um dos coeficientes a 1 e resolva o sistema.
a = 1
c = 2 a = 2
d = 6 a / 2 = 3
b = (2 c + d) / 2 = (2 * 2 + 3) / 2 = 3.5
Ajuste o coeficiente para garantir que todos sejam números inteiros. b = 3,5 então precisamos multiplicar todos os coeficientes por 2 para chegar à equação balanceada com coeficientes inteiros:
Útil para reações redox, este método envolve o equilíbrio da equação com base na mudança nos números de oxidação.
Melhor para: Reações redox onde ocorre a transferência de elétrons.
Processo: identificar os números de oxidação, determinar as mudanças no estado de oxidação, equilibrar os átomos que mudam seu estado de oxidação e, em seguida, equilibrar os átomos e cargas restantes.
Balanceamento com método de meia reação íon-elétron
Este método separa a reação em duas semi-reações – uma para oxidação e outra para redução. Cada meia reação é balanceada separadamente e depois combinada.
Melhor para: reações redox complexas, especialmente em soluções ácidas ou básicas.
Processo: dividir a reação em duas meias-reações, equilibrar os átomos e as cargas em cada meia-reação e depois combinar as meias-reações, garantindo que os elétrons estejam equilibrados.